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Abstract

A TCB and security kernel architecture for supporting
multi-threaded, queue-driven transaction processing appli-
cations in a multilevel secure environment is presented. Our
design exploits hardware security features of the Intel 80x86
processor family. Intel’s CPU architecture provides hard-
ware with two distinct descriptor tables. We use one of these
in the usual way for process isolation. For each process,
the descriptor table holds the descriptors of “system-low”
segments, such as code segments, used by every thread in
a process. We use the second table to hold descriptors for
segments known to individual threads within the process.
This allocation, together with an appropriately designed
scheduling policy, permits us to avoid the full cost of process
creation when only switching between threads of different
security classes in the same process. Where large numbers
of transactions are encountered on transaction queues, this
approach has benefits over traditional multilevel systems.

1 Introduction

Commercial transaction processing (TP) applications
generally depend upon a substantial set of services, often
provided in the form ofmiddlewareor as an operating sys-
tem extension. For the last several years we have been in-
vestigating topics relating to the design of a high-assurance
security kernel and Trusted Computing Base (TCB) sup-

�The views expressed in this paper are those of the authors and do not
reflect the official policy or position of the Department of Defense or the
U.S. Government.

porting TP requirements. This paper focuses on our ap-
proach for providing two related services, transaction queu-
ing and scheduling of multi-threaded processes, that are par-
ticularly difficult in a high-assurance security environment.

Aside from the general convenience of assigning each
distinct transaction to its own thread, the adoption of multi-
threading permits two distinct enhancements to overall
throughput [2].

First, it is often the case that the processing of each dis-
tinct transaction is quite stereotyped. Instead of creating
a new process for each incoming transaction (typically a
very expensive operation) a single, multi-threaded process
is set up when the system is initialized, with all of the code
needed to perform the transaction loaded in advance. An in-
coming transaction is then queued and allocated to the next
free thread of the pre-existing process. Numerous process
creation and deletion operations are thereby avoided.

Second, when a thread in execution blocks (e.g., to wait
for an I/O or logging operation to finish), the switch to a
ready thread in the same process often incurs a much lower
performance penalty than a complete context switch to a
different process.

The use of multi-threading for systems operating in mul-
tilevel secure (MLS) mode has generally been dismissed as
inappropriate because the sharing of an address space be-
tween two threads handling transactions at different access
classes appears to be essentially insecure. If the applica-
tion program being executed contained an implementation
flaw or a Trojan Horse1, high sensitivity data could easily
be transferred to a low sensitivity container, since both data
and container would be available in the same address space.

1According to [16] the term was coined by D. Edwards.



The implementation of MLS thread-oriented applica-
tions on traditional MLS systems requires processes at each
access class for each task in a workflow. Many potential
MLS workflows are not restricted to three or four sensitiv-
ity levels, but must address the gazillion problem [8], where
support of a very large number of sensitivity levels is re-
quired. When faced with numerous previously unencoun-
tered sensitivity levels, the penalty for process creation may
be high.

Our research goal, originally suggested by Shockley, was
to investigate the practicality of exploiting specific features
built into the Intel 80x86 architecture2 to obtain some of
the benefits of multi-threading in a high-assurance MLS
environment. Specifically, the CPU architecture supports
two distinct, independently addressable descriptor tables
per process [5, 6, 7]. From the perspective of descriptor-
based security controls, this means that each process sees
two distinct address spaces, not one. Both virtual address
spaces are further subdivided into four hardware privilege
levels by the CPU architecture. These hardware privilege
levels are used to organize all code and data into four tam-
perproof execution rings using standard techniques [18].
The work presented here is for an architecture and design
that can lead to an implementation.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of traditional transaction process-
ing systems and explores various approaches to transaction
processing in an MLS environment. The features of the In-
tel 80x86 processor family that will be utilized to achieve
our security objectives will be described in Section 3. An in-
formal presentation of the security policy to be enforced and
the overall system model appears in Section 4. Our security
architecture is described in Section 5. Section 6 presents a
discussion of the architecture, lessons learned, and areas for
future research. Our conclusions are presented in Section 7.

2 Background

In this section we provide an overview of traditional
transaction processing and the security-relevant features of
the Intel 80x86 family of processors that will be used in our
architecture.

2.1 Traditional Transaction Processing

The term transaction is unfortunately overloaded in
many papers on the subject. We will use the termtransac-
tion to refer to an application-defined unit of work, realized
in our architecture as an enqueued message requesting that

2Here80x86refers to the Intel 80286, Intel386, Intel486, and Pentium
processors. Of course, the newer, faster members of this family are the
intended target platforms. Intel386, Intel486, and Pentium are trademarks
of Intel Corporation.

a particular type of processing be performed. The message
and its frame provide the input and contextual data needed
by the application to perform the work, and by our TCB to
manage its processing.

In a typical queued transaction processing (TP) system,
as illustrated in Figure 1, queues are abstractions around
which transaction processing is organized.

The actual execution of a single transaction in our archi-
tecture is performed by an execution environment called a
task. A transaction is scheduled for execution by placing
it on an input queue associated with the task. Whenever
a task requests new work, a scheduler is invoked that ei-
ther provides the task with a handle for the next transaction
to be executed or blocks it, letting another task run. As
the work is performed, the application or middleware code
being executed by the task will typically invoke additional
blocking or non-blocking I/O requests. When the work is
complete, the task commits or aborts the transaction’s ef-
fects, and waits for the next transaction. Synchronization
between tasks (e.g., if arranged in a pipeline) is implicit in
the semantics of the enqueue and dequeue operations. The
transaction itself is not actually deleted from the queue un-
til the task has signaled that processing is complete by re-
questing more work. If the task generated work product
in the form of one or more new transactions, the transac-
tional semantics implemented by a higher-level subsystem,
the Transaction Manager (TM), will (in effect) perform the
deletion of the old transaction and enqueuing of any new
transactions as a single, atomic, recoverable event. To the
schedule manager, what is seen during the course of execu-
tion is a series of requests for blocking or non-blocking I/O
operations.

Transaction processing systems must also allow for con-
ditional workflow. Consider the example shown in Figure
3. After TP task A has completed processing a transaction,
it may enqueue a new transaction on the queues for both TP
tasks C and D. Alternatively, the context of the transaction
may result in an enqueue to only one subsequent queue, ei-
ther that of TP task C or that of task D.

Provision of an efficient high assurance, multilevel se-
cure transaction processing system imposes requirements
for isolation of information at various sensitivity levels. Isa
[9] has explored support for MLS TP using a variety of
traditional MLS architectures. These were deemed insuf-
ficient to satisfy goals for management of labeled informa-
tion, data consistency and support for the gazillion problem.
As an alternative to traditional multiprocessing approaches
to MLS, we describe a design that uses the hardware fea-
tures of the Intel 80x86 processor family to support high
assurance MLS TP.
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Figure 1. Traditional Transaction Processing

2.2 Intel Processor Features

Our MLS TP system is targeted toward the Intel 80x86
series of microprocessors. This series of processors im-
plements protection features, such as descriptor-based seg-
mented memory and multiple privilege levels [5, 4], that
are extremely useful in creating a kernelized, MLS system
[16, 17].

Memory is segmented and all access is via descriptors.
Descriptors reside in two system descriptor tables; thelo-
cal descriptor table (LDT) and theglobal descriptor ta-
ble (GDT). A memory address consists of a selector and an
offset. The selector is an index into one of the descriptor
tables (which describes the segment being accessed) and
the offset is the location within the segment that is being
accessed. Besides describing the physical address and lim-
its of the memory segment, the descriptors also contain the
access modes allowed (read or write), the type of segment
(code, gate, etc.), and the privilege level of the segment.

Four hardware privilege levels (HPL) are provided. HPL
0 is the most privileged and HPL 3 is the least privileged.
A privilege level is associated with every segment in the ad-
dress space. Privilege level information is also maintained
as part of the hardware-recognized segment descriptors for
the GDT or LDT segment. It is a principle of our archi-
tecture that the segment descriptors always reflect a kernel-
maintained constant ring number attribute for each segment.
A current privilege level(CPL) is maintained as part of the
execution state vector built into the CPU. The CPL is the
privilege level associated with the code segment currently
being executed. The CPL is used by the hardware to make
memory access determinations.

When a process attempts to access memory via a descrip-
tor, the hardware performs several checks. If the CPL is less
privileged than the HPL of the segment being accessed or
the access is for a mode not allowed (e.g. attempting write
access to a read-only segment), a hardware protection fault
results. Additionally, since all memory accesses must be
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via selectors into one of the two descriptor tables, a process
cannot access any segment for which a descriptor has not
been loaded. The creation of descriptors and loading of the
descriptor tables can only be accomplished by code running
in HPL 0.

The address space of a process is all the segments in the
GDT and LDT at the CPL or less privileged. A special de-
scriptor, known as a gate, is used to allow less privileged
processes to call more privileged routines. The gate de-
scriptor has a HPL equal to or less than the processes that
are allowed to call it. The gate provides a controlled entry
point to a code segment at a higher privilege level. It can
be used to contribute to the tamper resistance of a security
kernel and a TCB.

The Intel 80x86 series microprocessors provide two
modes of operation; real and protected mode. Real mode is
provided for backward compatibility and does not use any
of the memory protection required for multitasking, much
less MLS, operating systems. Protected mode, however,
provides hardware enforcement of memory accesses based
upon privilege levels, available descriptors and descriptor
attributes.

3 Domain Architecture

The distributed kernel will be associated with hardware
privilege level 0 (HPL 0). It will use the three other hard-
ware privilege levels to create a ring abstraction supporting
the traditional notion of subjects as< process; domain >

pairs. All memory management requests will be serviced
by the kernel.

Our architecture uses one descriptor table, the global de-
scriptor table, to support the abstraction of a process. A
process is then defined by a GDT image together with an
execution point: i.e., a< CPUstate;GDTimage > pair,
where the current privilege level is associated with the CPU
state. For a multi-tasked application, the intended use of
the GDT is to hold the descriptors of all of the segments
that are shared by all of the tasks associated with the pro-
cess. These segments include the entire distributed kernel,
which are all assigned to HPL 0, the HPL 1 segments of
the process queue management package, the task manage-
ment package, and any per process application level code
and/or data. It is assumed that segments available to less
privileged rings are virtualized such that per process code
and data is read-only when the execution state of the CPU
is in a less privileged ring. From the perspective of an ap-
plication in execution, the code and data addressed in the
GDT looks like ROM: it can be read, but not modified or
deleted. The application is not permitted to introduce new
descriptors into the GDT.

The second descriptor table, the local descriptor ta-
ble, is used to support the abstraction of a task. (We

have avoided naming this entity a “thread” because we
expect that a genuine TP application may choose to in-
troduce a third level of “multi-threading” in to pick up
even more throughput.) A task is defined by a GDT im-
age, an LDT image, and an execution point: i.e., a<

CPU state; LDT image;GDT image > triple. A given
GDT image is shared among all of the tasks of a given pro-
cess, but each task has its own LDT image.

The intended use of the LDT is to hold all per task
data (e.g. its stack, linkage information, working variables,
buffers, etc.), generally with read-write access. Thus, as
illustrated in Figure 3, to an executing task the segments
addressed in the LDT always look like RAM. Subject to
the security constraints imposed by the kernel, the task may
freely create, delete, or make known segments in this ad-
dress space just as an ordinary process would on a conven-
tional kernelized system.

RAM

ROM

GDT-space

Processor

Process

Process

Task Task Task

Process Process

LDT-space

Figure 2. All tasks are managed by the pro-
cess, which isolates tasks by allocating sep-
arate LDT-spaces to each task. This is anal-
ogous to the management of processes by a
kernel, which virtualizes the processor and
allocates RAM to each process, thus isolat-
ing them from other processes. All tasks
share a common GDT-space as all processes
share a common ROM.
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4 Security Policy and Model

Security policies relate users and information. Here we
will briefly describe the security policy to be enforced by
the TP system, first in general terms and then as a technical
policy, i.e., in the context of a computer system where the
policy is applied to subjects and objects.

The mandatory policy can be related to corporate or
government directives an example of which is DoD Direc-
tive 5200.28 [12]. Simply stated, the policy declares that
only authorized users may have access to sensitive infor-
mation. User authorization is conveyed through clearances,
while information sensitivity is denoted by its classification.
Each user will be accorded an access class which will be
a combined secrecy class and integrity class. The secrecy
class describes the sensitivity of information that the user is
trusted not to disclose to unauthorized users, while the in-
tegrity class reflects the trust placed in the user to disallow
unauthorized modification or contamination of information.
More formally stated, our mandatory policy has two com-
ponents each of which is characterized by a read property
and a write property.

Secrecy Component

Read property: Only if a user’s secrecy class is greater
than or equal to the secrecy class of the information
may a user read that information

Write property: A user must insure that information is
stored such that it will be inaccessible by users who
do not possess the requisite authorization to access the
information.

Integrity Component

Read property: A user may not read low integrity infor-
mation that could potentially corrupt high integrity in-
formation to which that user has access.

Write property: A user may only store information at or
below the user’s integrity class.

When describing a security policy in terms of a com-
puter system, we refer to subjects and objects rather than
people and information. Formally, a subject is an active en-
tity operating on behalf of the user and is described as a
< process; domain > pair. Here we define a process to be
a program in execution that is completely described by its
current (and single) point of execution and its address space.
The current context of the process, found in the CPU state,
describes the domain. It is a subset of the address space and
may be represented by a ring number [18, 17]. We can see
that a process may have several subjects, but only one sub-
ject within the process can be executing at a time. Subjects

will be characterized by an access class that will be at or be-
low the clearance of the user, i.e., some subset of the user’s
total set of authorizations. The subject’s domain of access
will be further restricted by its ring number.

The kernel creates the notion of processes. Each pro-
cess manages its tasks and is a trusted subject, i.e., a
subject having two security classes: a read-class and a
write-class. The read-class defines the highest access
class that the subject can read, while the write class
places a lower bound upon the access class that the sub-
ject can write.3 In theory, the kernel can set up a
process with a particular read-class/write-class range and
different processes within our system could have dif-
ferent ranges. The access classes of all tasks man-
aged by a process must fall within its read-class/write-
class range. Tasks will correspond to untrusted subjects,
in this case, subjects with a degenerate read-class/write-
class range. In both cases, subjects are defined by an
< execution point; ring; LDT image;GDT image >

quadruple. The kernel mediates all accesses to segments by
the process and insures that all segments within the address
space of the processes are within the read-class/write-class
range of each process.

The distributed kernel manages its own code and data.
All kernel segments are associated with the most privileged
ring, Ring 0. Only when the processor is executing in HPL
0 is it possible for the kernel’s address space to be modified.

Processes are Ring 1 subjects. Only these subjects may
successfully call the kernel to introduce or delete Ring 1
segments from the GDT. Thus they are responsible for the
management of GDT-space. The intent is that this will be
done only when the system is booted (i.e., emulating ROM)
or under administrator control (i.e., emulating “reburning”
the ROM.) This approach insures that tasks will be unable
to use the GDT as a resource supporting covert channels.

To subjects in Rings 2 or 3, the GDT-space is static. It
follows that in order to be readable by all Ring 2 or 3 sub-
jects of a task, a segment in the GDT must be “process-
low” in sensitivity. One can see that this is precisely what
is needed: what one finds in here is “secrecy-low” appli-
cation code (read only) in rings 2 and 3, task management
and task scheduling code in ring 1, and kernel code in ring
0. Of course “internal databases” for the kernel and task
scheduler are made unreadable by rings 2 and 3. It is also
important that even ring 2 and 3 data in the GDT be un-
writable to avoid channels (even if the policy would allow
it to be written by some task.)

This allocation of segments to rings creates an architec-
ture that stands up to the litmus test established by the ref-
erence monitor concept [1]: that the reference monitor be

3Using these notions, we see that atrusted subjectis defined to be a
subject that is not constrained by the confinement property within its write
class-to-read class range.
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Figure 3. Multilevel Secure Transaction Processing Architecture. Each transaction is in a separate
segment (not illustrated). The multilevel queues are ring 1 internal databases, respectively, each
contains pathnames for the segments that comprise their members.

tamperproof or self protecting and that it be non-bypassable.
The hardware protection mechanisms of the Intel 80x86
processors permits us to create protection domains that can
be managed using hardware features and we benefit from
the assurance provided by carefully implemented hardware
mechanisms.4 Our architecture is conceptually simple, thus
lending itself to analysis for assurance. The use of segments
permits us to begin with hardware objects that may be aug-
mented with additional attributes by the kernel. These at-
tributes include the segment’s access class and ring number
and, from the perspective of less privileged subjects, may
be considered immutable. Although less privileged subjects
are able to request the creation and deletion of segments
from both the GDT (emulating ROM) and the LDT (emu-
lating RAM), all modifications ultimately are mediated by
the kernel.

The policy for LDT-space is similar to that associated
with other high assurance MLS systems which rely upon
segmentation to provide process isolation and thereby iso-
lation of access classes [16, 17]. Each subject in Ring 2

4It is recognized that hardware mechanisms may contain exploitable
flaws [19]; however, flaws are less numerous than in comparable commod-
ity software [11].

is provided with a separate LDT. When the task manager
schedules a task the LTD descriptor register will be loaded
with the value of the LDT of the task to be executed. The
Intel hardware insures that no segments are accessible to the
ring 2 subject other than those visible via the LDT and the
GDT. As we have noted earlier, not all of the segments con-
tained in the GDT will be accessible by ring 2 or 3 subjects.
Since each subject in ring 2 is single level, its address space
will be restricted to segments for which the subject meets
the requirements of the model described earlier.

We accomplish task switching by using a call gate, en-
suring that the Intel-designed context switching mechanism
is invoked to enter the more privileged Ring 1 domain where
LDT-to-task mapping is managed. This means that the cost
of switching from one task to another is roughly the same
as the cost of switching from one process to another. Our
architecture does not save time by substituting task for pro-
cess switches, but by reducing the total number of switches
performed.

5 System Design

Our three-tier architecture is illustrated in Figure 3.
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At the core of the system is the security kernel. The ker-
nel manages memory, processes and its eventcounts [15].
The processes are each designed to handle a specific trans-
action type. There would be as many processes as there are
transaction types. The processes are multi-level and con-
sist of a task manager and process queue manager. The
task manager within the process creates and manages sin-
gle level transaction processing tasks that actually process
the transactions. The intent is to have a covert channel-free
model and then to not introduce storage channels during im-
plementation.

The incoming transactions of a given type would be sent
to the process of the correct type and then to the task of
the appropriate level. The tasks are the outer layer of the
system and are single level entities which process a given
transaction type of a given classification.

Figure 4 illustrates the system layering and dependen-
cies.

Privilege Level 2Transaction Manager

Privilege Level 1

Memory Manager

Privilege Level 0

GDT Manager

Process Task Manager

Task Manager

Task Event Manager

Process Manager

Kernel Event Manager

LDT Manager

Privilege Level 3Applications/Tasks

Process Queue Manager

CPU Manager

Figure 4. Selected System Layers.

5.1 Security Kernel

The security kernel consists of several distinct subsys-
tems. There is a CPU Manager, which manages the various
local descriptor table (LDT) images (used by the individual
tasks within each process space), the global descriptor table

(GDT) and adding or removing segments from any of the
descriptor tables. There is a Memory Manager which is re-
sponsible for allocating and deallocating memory. There
is a Process Manager, which is responsible for creating,
scheduling and destroying processes. Finally, there is a Ker-
nel Event Manager, which manages eventcounts used by the
processes and the MLS queues. These eventcounts are used
for synchronization by all modules in the system.

5.1.1 CPU Manager

All code and data manipulated by a task is contained wholly
in the LDT and all code and data used by the kernel, the
MLS queues, the processes are contained wholly in the
GDT. As such, a task switch involves only an LDT switch.
The CPU Manager can be viewed as being logically divided
into two distinct subsystems; one which manages the LDT
and one which manages the GDT. Whenever a new task is
created, a new LDT image is created to hold the descriptors
for its address space. Associated with each LDT image is
an identifier which is made available to the less privileged
ring.

GDT Manager

The GDT component of the CPU Manager is responsi-
ble for managing the global descriptor table. The specific
functions it provides include:

create gdt - create a new GDT image with the specified
access class range

destroy gdt - destroy the specified GDT image

add to gdt - add a segment to a specified GDT image

remove from gdt - given a valid GDT selector, the associ-
ated descriptor is removed from the GDT and the cur-
rent process GDT image.

switch gdt - switch GDT segments

Associated with each process is a handle to a GDT im-
age. On a process switch the process portion of the GDT
must be saved to the currently running process’ GDT image
storage segment while the GDT image of the new process
must be restored to the process portion of the GDT.

The call to switch a GDT segment comes from the Pro-
cess Manager which actually performs the process switch.

The GDT Manager is supported by one data structure:

GDT Database used to keep track of the GDT images for
the various processes
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LDT Manager

The LDT component maintains a database of LDT im-
ages. Each of these LDT images is associated with a given
TP task. However, the mapping between a given LDT im-
ages and a specific task is not maintained by the kernel, but
instead is maintained by the Task Managers. The LDT com-
ponent provides functions to:

create ldt - creates and returns a new LDT image at a spec-
ified access class

destroy ldt - destroys an LDT image

add to ldt - given a valid segment and access class, the
descriptor for the segment is added to the current LDT

remove from ldt - given a valid selector for a segment in
the current LDT, the associated descriptor is removed
from the LDT.

switch ldt - make a given LDT image the current LDT

When a task requests the addition of an item to its LDT, the
Task Manager brokers the request. It adds an access class
and the task’s LDT image number to the arguments and in-
vokes the kernel. The kernel LDT Manager validates the
access class of the specified LDT image against the access
class provided by the Task Manager and the range desig-
nated for the process before adding the designated entry.
Note that the Task Manager must provide the actual access
class of the task as the kernel only knows the range of access
classes managed by the Ring 1 subject.

When a task manager creates a new task, a request is
made for the kernel to create a new LDT image. It is then
up to the task manager to associate with that LDT image a
particular task.

The LDT component is supported by one data structure:

LDT Database used to keep track of LDT images and their
addresses

5.1.2 Memory Manager

The Memory Manager manages virtual memory. It is re-
sponsible for those functions that allocate memory for the
segments that are currently in use. It provides informa-
tion on every segment currently in memory. It enforces the
mandatory security policy basing its decision upon a com-
parison of process ranges, requested attributes, and segment
attributes. A key attribute cached for each segment by the
Memory Manager is the access mode of the segment. The
Memory Manager functions include:

make known - determines whether a segment can be
moved into the virtual memory and, if so, provides a
handle to the segment

terminate - removes the segment from the virtual memory

swapin - insert a segment into the process virtual address
space

swapout - delete a segment into the process virtual address
space

list memory - return the attributes associated with a seg-
ment

The Memory Manager is responsible for one data struc-
ture:

KST used to keep track of all segments currently in the
address space of the process and their attributes (secu-
rity label, descriptors, etc.)

5.1.3 Process Manager

The Process Manager, as the name implies, manages the
processes, which equate to different transaction types. The
Process Manager implements several operations to manage
processes.

create process - creates a new process and adds it to the
ready list

switch process - suspend the current process and run the
next ready process

destroy process - destroys a process

changeprocessstatus - moves a currently running pro-
cess to either ready or blocked status

get current process - returns an identifier for the current
process

Associated with each process is a global descriptor table
image. These GDT entries are where each process stores the
code and data the task manager needs to perform its func-
tions. Upon a process switch, this GDT image is switched
to reflect the new process’ entries. The process manager
also performs scheduling of processes.

The Process Manager is supported by one data structure:

Process table holds the process information (including
GDT image) needed to manage processes

The process table allows the kernel to map a given pro-
cess to its GDT image. A process switch also results in a
switch of the contents of the process portion of the GDT.
Processes can be in one of three states: ready, running or
blocked on an event.
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5.1.4 Kernel Event Manager

The Kernel Event Manager provides eventcounts and se-
quencers, called tickets, for use by modules in Ring 1: pro-
cesses and the MLS queues. Sequencers are monotonically
increasing integers (perhaps with a modulus), initialized to
0. Eventcounts are also initilaized to 0 and monotonically
increasing. Theadvanceoperation increments the value of
the eventcount and indicates the highest ticket number that
should be serviced.

The Kernel Event Manager provides the following func-
tions:

k create evct - returns a new kernel eventcount with a
specified access class range

k destroy evct - deletes a specified kernel eventcount

k await - causes a wait on a specified kernel eventcount
value

k advance - advances a kernel eventcount

k read evct - inspect the current value of a specified kernel
eventcount

k ticket - get a kernel ticket

The MLS queues use kernel eventcounts and sequencers
to keep track of the number of items in a queue. A call
to get work from an empty queue becomes a wait call on
a kernel eventcount and leads to a process change. When
new items are added to this queue, the associated kernel
eventcount is advanced at which point the blocked process
is moved from the blocked process list to the ready process
list making it eligible to be scheduled. Process schedul-
ing is determined by the transaction flow through the MLS
queues.

The Kernel Event Manager is supported by one data
structure:

KED the kernel event database, is used to track the values
of the eventcount-sequencer pairs

5.2 Process Queue Manager

The Process Queue Manager is the entity of the system
which managers the MLS queues. It is layered between the
process (Task Manager) and the kernel. The Process Queue
Manager provides functions which allow processes to:

create queue - create an MLS queue

destroy queue - destroy an MLS queue

enqueue - enqueue an item on an MLS queue

dequeue - dequeue an item from an MLS queue

copy to queue - make a copy of an item and place it on an
MLS queue. This permits an item to be enqueued as a
“carbon copy” to an MLS queue.

get work - get and item from an MLS queue (without de-
queuing it)

Initial input transactions are added to the system and are
put on the MLS queues (usually by type) by some trusted
input process. This process would enqueue an incoming
transaction on the MLS queue associated with the process
that handles transactions of that type. The transactions are
of varying access classes. The Task Manager maintains sin-
gle level tasks which process the transactions from the MLS
queue (based on access class).

The Task Manager makes aget work request to the Pro-
cess Queue Manager while providing a preferred access
class. The Task Manager seeks to keep running the same
TP task (at a specified access class) as long as work exists
for that task to process. This minimizes task switches and
provides maximum throughput of transactions through the
system. The Process Queue Manager will return an item
at the requested access class or an item at a different ac-
cess class if: (1) there were no items at the requested access
class or (2) there is a transaction with a higher priority than
the next transaction of the requested access class. The ac-
cess class of the item returned by the Process Queue Man-
ager determines whether the current task remains running
or whether a new task will have to be scheduled.

A call to get work from an empty queue blocks (being
translated into a wait call on a kernel eventcount). The pro-
cess of the calling Task Manager would thus be blocked and
a new process scheduled by the kernel. When the blocked
process has an item enqueued to it (which also involves a
call to advance the appropriate eventcount), the process will
be moved to the ready list and could be scheduled to run.

All the functions of Process Queue Manager are exported
to the Task Manager.

The Process Queue Manager is supported by one data
structure:

PQD the process queue database, is used to keep track of
information about the various MLS queues

5.3 Task Management

Here we describe the two task management subsystems
pertinent to our security architecture. They are the Task
Manager, which is responsible for resource allocation to
the tasks. The other subsystem is the Task Event Man-
ager, which implements eventcounts to be used for inter-
task communication and scheduling.
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5.3.1 Task Manager (TKM)

This module is responsible for resource allocation to tasks.
Each process contains a Task Manager which manages

the single level TP tasks for each transaction type. The
Task Manager creates, schedules and destroys the individ-
ual tasks. The Task Manager is very similar to a typical
process manager, however, instead of managing a process
table as a kernel might, it manages a per process task table.
It manages a database that contains an identifier for each
task, per task state information, a handle to the transaction
in the process queue and an eventcount associated with the
task. Effectively, the each task is associated with a queue of
length one.

The Task Manager is responsible for managing the sin-
gle level tasks within each process space. The operations
supported by the Task Manager include:

create task - create a new single level task

destroy task - destroy a single level task

activate task - schedules a new task

switch task - changes from one single level task to another

The Task Manger exports the following functions

tm get work - returns a transaction for processing by the
current task

The Task Manager implements scheduling of single level
tasks within its process space. Besides directly managing
the TP tasks, the Task Manager also serves as an interme-
diary for task access to kernel memory management func-
tions (add/remove from LDT). The Task Manager maintains
a data structure that associates each task with its access class
and LDT image. When a tasks attempts to add or remove a
segment from its LDT image, the Task Manager passes the
request on to the kernel after adding the access class of the
requesting task and the identifier for its LDT image.

Additionally, the Task Manager interfaces with the Pro-
cess Queue Manager to retrieve and insert items into MLS
queues on behalf of the tasks. When a task makes a request
for a new transaction, the Task Manager makes a call to
get workproviding the appropriate access class as a param-
eter. If the returned item is of the requested access class,
the Task Manager returns it to the current task which con-
tinues to run. If the Process Queue Manager should return
an item of a differing access class, the Task Manager will
suspend the current task and begin running the task of the
access class associated with the returned transaction. This
will result in making the segment containing the transaction
known in the address space of the task by requesting a call
to the kernel to add the segment to the LDT of the task. An

attempt toget work from an empty queue will block and not
return until there are items available in the queue.

The Task Manger will insure that tasks blocked on I/O
calls are run after I/O completes. In general, tasks will exe-
cute asynchronously within a process: the relative execution
speeds of two tasks cannot be determineda priori. It is an-
ticipated that tasks may need to synchronize their activities
in order to communicate.

It is expected that there will be a per-process task-pool of
tasks for the most common security classes associated with
that process. This pool would be administratively config-
ured prior to system boot and the tasks associated with this
bank would be non-deletable. In addition, the administrator
would allot resources to dynamically create and delete tasks
at less common security classes. At runtime both common
and uncommon classes would be treated as a cache. Tasks
in the task-pool would never be removed from the cache,
while those associated with less common security classes
would be managed using a standard caching algorithm, such
as least recently used.

Our belief is that a “pool” of intelligently selected, stat-
ically allocated tasks will significantly reduce the first cost
described in the introduction, i.e., for environments with a
small number of known access classes, it avoids unneces-
sary process or task creation. Where the gazillion problem
arises, adding a pool of dynamically allocated, cached tasks
managed in ring 1 should permit significant savings if the
cache is large enough and there is goodlocality of class.
Even in the worst case, where incoming work is a random
selection from a gazillion possible classes, the overhead of
full process creation is avoided, as one need only set up a
new LDT for the new access class. The GDT, which is com-
mon to all tasks, is knowna priori to be readable to the new
task, and does not need to be revalidated.

It is important to note that the advantage of our approach
is not the avoidance of a task switch. That, in fact, is re-
quired to insure no flow of information through the regis-
ters or stack used by tasks at each sensitivity level. The
advantage comes through the support of a large number of
sensitivity levels within a process and the consequent avoid-
ance of process creation to support transactions at unusual
access classes. The kernel-level scheduler might only run
another process when all of the work on the queue of the
current process has been exhausted.

The Task Manager is supported by one data structure:

TD the task database, used to maintain information on the
current single level tasks being managed by the Task
Manager

5.3.2 Task Eventcount Manger (TEM)

This module implements eventcounts and sequencers (viz.
tickets) to be used for synchronization and scheduling of
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tasks. These are not kernel eventcounts, but Ring 1 abstrac-
tions. The Task Eventcount Manager exports two synchro-
nization primitives the following operations:

t create evct - returns a new TEM eventcount with a spec-
ified access class range

t destroy evct - deletes a specified TEM eventcount

t wait - causes a wait on a specified TEM eventcount value

t advance - advances a TEM eventcount

t read evct - inspect the current value of a specified TEM
eventcount

t ticket - get a TEM ticket

The advance operation will advance the specified event-
count by 1 and may cause tasks waiting on that eventcount
to be awakened. The await function causes return to the
calling task to be delayed until the eventcount attains a par-
ticular value.

The Task Event Manager is supported by one data struc-
ture:

TED the task event database, is used to track the values of
the eventcount-sequencer pairs

5.4 Tasks

The tasks in the outermost layer of the architecture are
the untrusted applications. It is these tasks that actually do
whatever work is required by the transactions. Each task
is at a single level and might coexist with copies of itself
at different sensitivity levels within the same process space.
However, through Task Manager manipulation of the LDT
images, each task has its own distinct address space (per-
haps sharing a read-only code segment.) Since the task
manager sets up an LDT image for a task when it is created,
a task switch simply requires changing the current LDT.

Our objective is to maximize transaction throughput.
Thus the scheduling policy entails completely processing
all entries in a given queue before moving on to the next
queue. So, in general, a process continues to execute so
long as transactions remain in the MLS queue it is waiting
on. Likewise, within the process, a task continues to exe-
cute so long as transactions of the appropriate access class
remain in the MLS queue of its controlling process. In this
manner, we minimize the number of task switches within
a process and minimize the number of processes switches
within the kernel.

5.5 Input/Output

The currently defined architecture does not yet incorpo-
rate specific functions supporting the direct use of I/O de-
vices by Ring 2 or Ring 3 tasks. This omission reflects our
initial research focus on the queue abstraction and multi-
tasked processes. It is possible, however, to sketch our gen-
eral intent with respect to I/O services.

Our Obuective is to encourage the creation of Ring 3
transaction servers that view input and output in terms of
a set of logical queues, representing streams of incoming
and outgoing events and data. Ring 2 middleware (not else-
where discussed in this paper) maps logical queues to actual
queues under system management control.

Usually, Ring 2 device server processes (device demons)
will allocate and manage physical devices. Consider, for
example, a multilevel printer required to print jobs of var-
ious classifications. We would allocate such a printer to a
dedicated print spooler process and use the multitasking ar-
chitecture described in this paper to structure the work. In
Ring 1, we would augment the Task Manager to not only
remove work from the input queue and assign it to a task,
but to manage as well device-dependent functions associ-
ated with changes of current device class (e.g., printing a
separation banner, reinitializing the printer to a known state,
etc.) Most of the device-dependent code would reside in
Ring 2 and execute in a single-level environment. As Ring
2 must invoke Ring 1 functions to do actual I/O, Ring 1 can
intervene when necessary to do additional security-critical
functions, such as page labeling.

As the printer example shows, our architecture still re-
quires the inclusion of device-specific code within the TCB.
It does, however, provide a useful framework for separat-
ing security-critical device-dependent functions from non-
security-critical functions.

5.6 Transaction Management Requirements

We allocate transaction management (TXM) and other
middleware system software to Ring 2. In particular, we
would expect most transactional resource managers (e.g.,
a DBMS) to be placed in this ring. Support for specific
programming environments, including multithreading (e.g.,
a Java interpreter) would also exist in this ring.

Notionally, Ring 2 manages any system-wide discre-
tionary access controls (DAC). This allocation interposes
a hardware-enforced protection boundary between “system
software” and “application.” Our architecture does not pre-
clude the use of memory isolation techniques to isolate
threads. However, our assumed hardware base provides
only one LDT, which we must use either in Ring 1 for task
isolation, or in Ring 2 for thread isolation. We chose to
use it for task isolation because this suited our particular

11



research goals. For systems not required to support MAC,
one could choose instead to use the techniques we discuss to
protect individually per user threads by giving them distinct
LDT images.

We have not yet undertaken a detailed architecture for
the Ring 2 middleware. In this section, we report therefore
conclusions from selected design studies undertaken in sup-
port of the Ring 1 architectural effort.

5.6.1 Concurrency control

We continue to provide eventcounts and sequencers in Ring
2 for both interprocess and intertask synchronization and
control. Without them, it would be impossible for the Ring
2 programmer to design device demons or shared resource
managers. However, Ring 1 also exports the useful ab-
straction of a queue, and provides a framework for custom-
programmed multilevel queues. For those choosing to use
this abstraction, concurrency control for the queue is im-
plicit: that is, one is guaranteed that a given element will
be provided to one, and only one, task instantiation, and
queue functions are already “task and process safe” without
explicit user-level synchronization.

In Ring 3, TP application programmers will typically use
the TP services provided by Ring 2 rather than explicit syn-
chronization.

5.6.2 Write-up

Lattice-oriented mandatory policies allow subjects to write
to objects of access classes that dominate that of the subject
itself. Typically, providing for the unrestricted use of such a
capability eases attack by denial of service, while prohibit-
ing the capability altogether precludes the construction of
otherwise valid application systems.

Our architecture for Ring 1 supports two kinds of “write-
up” for untrusted Ring 2 and 3 tasks:

1. One may (if one knows its name) advance a higher-
level eventcount. This potentially unblocks the tasks or
processes (if any) waiting on that particular advance.
There is no improper backward channel because the
low-level advancer is not shown whether any waiting
processes existed. In effect, this provides a primitive
“signal up” capability: one informs the higher level
that some event has occurred.

2. One may copy a queue element onto a higher level
input queue. (The “copy” operation takes as argu-
ments both the name of the queue, and the access
class wanted for the copy). Return from this operation
shows that “the system” has successfully enqueued the
element but provides no indication whether any higher-
level task received it. This service is a higher-level

version of “advance up”: the low-level subject may, in
effect, attach a message to an event notification.

To prevent a back-channel while preserving control of
all queue elements, Ring 1 must always do something use-
ful with the copied element. To block resource allocation
channels, we expect that ordinary user queues will have
static size constraints. If Ring 1 cannot deliver the copy
to the designated queue, it will instead log the event. (The
log entry will, of course, include a complete copy of the un-
delivered element.) In the unlikely event that the system
operator has failed to replenish the log media, an option
will be available to suspend processing until the media is
replenished. A Ring 1 demon will periodically awaken to
attempt to “redeliver” such transactions. In any event the
system operator will be kept informed of the count of unde-
livered transactions (if any) existing in the log. Of course,
Ring 1 does not inform the low-level subject invoking the
copy operation which alternative occurred, as that would be
a channel.

5.6.3 Deadlock control

The design of an adequate system for managing deadlocks
in a multi-level, distributed TP environment would seem,
at first glance, to require a significant collection of trusted
code within the TCB because, by definition, deadlock is a
global condition that may involve multiple nodes. We argue
that this is not, in fact, the case.

The key observation is this: deadlock is defined as a “cir-
cular wait”: i.e., one has a set of tasks arranged in a cycle,
each waiting for a lock to be released that is held by the
next.

However, it is simple to prove that any such circular wait
is single-level (i.e., all lock-holding transactions are of the
same level). The proof follows directly from the fact that
the set of access classes is partially ordered. The analog of
“waiting for a lock” is “waiting for an eventcount to reach
a prescribed value” and of “holding a lock” is “not having
advanced an eventcount yet”. Tasks are only allowed by
the TCB to wait on eventcounts of the same or lower class.
Suppose a task is “waiting down”. It cannot, then, be part of
a deadlock cycle! Suppose the contrary; then there must be
cycle in the set of access classes. Since no such cycle can
exist, a task that is “waiting down” is not part of a circular
wait. To be clear, the taskholding the wait may be part
of the circular wait, but the task waiting down is not: it is
blocked by the deadlock, but not participating in it.

It follows that if one looks for deadlocks one access class
at a time, one finds them all. This means that one can sched-
ule for a given access class a “single-level” deadlock main-
tenance routine and be assured, when it completes, that any
deadlocks at that class have been cleared. There is no need
to synchronize deadlock maintenance among levels.
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5.6.4 Scheduling Policy

The module design described previously carefully distin-
guishes between synchronization and scheduling. Synchro-
nization is implicit in the semantics of an eventcount “wait”:
a processing entity (task or process) has finished its assigned
work and will not be resumed if or until more is available.
Upon return from a “wait,” the task or process may be sure
there is more work available on its input queue.

The scheduling issue is: given a set of ready entities (pro-
cesses, tasks), which one should be resumed? The algo-
rithms used in Rings 1 and 2 collectively define a schedul-
ing policy. We have therefore carefully placed these algo-
rithms in independent submodules so that we can test dif-
ferent ideas.

Our initial design is deliberately simple, emphasizing
maximum throughput. With static allocation of prebuilt ap-
plications, it is anticipated that obvious timing channels can
be appropriately monitored. Although we have provided
a field for a transaction-specific priority, our initial sched-
uler ignores it. We expect to investigate more sophisticated
scheduling policies in later projects.

For many TP applications, the key goal is maximum
throughput. This reflects an economic environment where
one is paid for each transaction processed. Since costs are
fixed (i.e., per node) any additional transactions that can be
processed in a unit of time are “pure profit.” A small in-
crease in throughput is leveraged into a larger profit margin.
We have therefore chosen, in our initial design, to empha-
size throughput as a goal.

Our approach has been to choose a scheduling policy that
avoids process or task switches whenever possible. There-
fore, the kernel chooses to resume the current process (if
not blocked for I/O) as long as there is work queued for it.
The Process Queue Manager schedules work within a pro-
cess batched by access class, so that the task scheduler can
resume the current task as long as there is work at the same
level available for it.

We have also tried to design the system to reduce ring
crossings, as these are more expensive than ordinary pro-
cedure calls. In particular, by re-implementing intertask
eventcounts in Ring 1 (rather than using kernel eventcounts)
we avoid calls to the kernel during task scheduling and syn-
chronization.

Clearly, in most applications we must provide for pri-
ority processing. There will also be system requirements
for high-priority processes (those serving high-performance
I/O ports, for example.) Accordingly, we have provided
both for a “priority” attribute for kernel processes, and for
individual transactions. We have not yet added priority
to our scheduling policy, as our initial intent is simply to
demonstrate the use of LDTs to support multi-tasked pro-
cesses.

6 Discussion

In this section we compare our architecture with some
alternatives, relate some lessons learned, and discuss future
research possibilities.

6.1 Comparison with Alternative Architectures

There are several possible alternatives to the MLS trans-
action processing system we present. The first is to cre-
ate a system composed of several single level TP systems.
Each single level system within this conglomeration would
process transactions of a given level. Some type of trusted
interconnection device, such as the Naval Research Labo-
ratory Pump [3], would be used between these single level
systems. This solution becomes unwieldy, if not impracti-
cal, when faced with the gazillion problem and a complex,
conditional workflow.

The second alternative would be to implement a TP sys-
tem on top of an already developed MLS system, such as
the XTS-300 [13] or the GTNP [14]. However, the need to
maintain separation between transactions of differing levels
would require the creation of a separate process not only
for each workflow node, but for each access class as well.
Although this approach might be successful for a few ac-
cess classes and task types, it fails when confronted with the
gazillion problem. In addition, since this traditional archi-
tecture is not optimized for TP, performance enhancements
such as the task-pool and the queues would be hard to im-
plement without significant modification to the underlying
system.

6.2 Lessons Learned

At the start of this effort, we believed that support for
MLS transaction processing would require a security ker-
nel design significantly different from traditional systems,
e.g. [10, 14]. In particular, it was thought that multilevel
queues would have to be managed by the kernel. In our fi-
nal design, the queues are managed outside of the kernel,
but within the TCB. Queue management would have added
considerable complexity to the kernel, so the resulting de-
sign supports minimization objectives for a high assurance
reference validation mechanism.

6.3 Further Research

In a previous section, we suggested that additional per-
formance benefits could be achieved by superimposing
thread management on tasks. We would place the thread
management software in Ring 2, providing services to ap-
plication threads in Ring 3. The thread manager would be
similar to the Task Manager, simplified by the fact that all
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threads within a task execute at the same mandatory secu-
rity class. A natural choice is to associate a new thread with
each incoming transaction. Traditional discretionary access
controls (DAC) could then be enforced with respect to ob-
jects visible at the Ring 2 interface.

Providing isolation between threads belonging to differ-
ent users remains a problem, primarily because the CPU
architecture supports only two virtual address spaces. We
haved defined (in general terms only) the following possi-
ble approaches:

1. Ring 2 maintains per thread images for a section of
the LDT and swaps them in and out when the thread
changes – in effect, providing a ”virtual” second LDT.

2. Ring 2 provides a closed, Java-like interpretive envi-
ronment (not necessarily high-performance, but attrac-
tive to some potential users).

7 Conclusions

We have described a system architecture intended to sup-
port multilevel transaction processing. Hardware protec-
tion features of the Intel 80x86 family of processors are
used in an innovative design which supports tasks at mul-
tiple levels within a single process. The design starts with
a relatively conventional security kernel executing in hard-
ware privilege level 0, which is responsible for enforcing
the mandatory access control policy, process management,
memory management, multilevel queue management, and,
within each process, enforcing a ring mechanism.

In Ring 1 a task manager executes as a trusted subject
that creates virtual single-level queues and manages tasks.
Tasks having frequently encountered access classes may be
administratively assigned to a static task pool, while an ap-
propriate scheduling algorithm can be used to maximize
throughput for less common access classes. This design al-
lows us to avoid creation of new processes to handle tasks
at new access classes.

The tasks in Ring 3 may contain a conventional thread
manager and may include either software or hardware-
based support for the enforcement of discretionary access
control policy. The latter is achieved through the further
virtualization of the segments in the local descriptor table so
that a thread is only able to access segments for which it has
appropriate discretionary access. Alternatively, to achieve
the former, Ring 3 can contain the application itself, which
yields the kind of DAC enforcement typical of current com-
mercial products.
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